Сравнительная оценка белых форм винограда селекции СКЗНИИСиВ по органолептическим и физико-химическим характеристикам

Прах А.В., к.с.-х. наук, Нудьга Т.А., Гугучкина Т.И., д.с.-х. наук. Северо-Кавказский зональный научно-исследовательский институт садоводства и виноградарства

Актуальность исследований. Селекция винограда привела к созданию сортов хорошо приспособленных к определенным районам произрастания и удовлетворяющих требованиям потребителей. Сорта, полученные в результате длительной основой селекции, являются промышленного виноградарско-винодельческих хозяйств. Однако изменения абиотического и биотического характера ставят перед современной селекцией винограда новые задачи получении устойчивых сортов c высокими качественными характеристиками.

Целью работы явилось исследование новых белых форм винограда, селекции СКЗНИИСиВ, на основе органолептической, физико-химической и технологической оценки виноматериалов.

Объектом исследований явились 8 белых сортов форм винограда выращиваемых в фермерском хозяйстве «Радик». Виноматериалы были приготовлены по классической технологии приготовления белых столовых вин в цехе микровиноделия научного центра виноделия ГНУ СКЗНИИСиВ Россельхозакадемии. Был исследован физико-химический и ароматический состав полученных виноматериалов по общепринятым и разработанным в научном центре виноделия методикам. Дегустация виноматериалов проводилась по 10-балльной шкале. При оценке качества учитывались следующие показатели: цвет, прозрачность, гармоничность, полнота, вкус, аромат и наличие посторонних тонов.

Результаты и обсуждение. Сахаристость полученного виноградного сусла белых форм составила от 19,6 (ТАНА 23) до 25,8 г/100см³ (ТАНА 1). Титруемая кислотность всех образцов находилась в диапазоне 6,5-8,0 г/дм³. Органические кислоты в основном были представлены винной $(3,1-4,5 \text{ г/дм}^3)$ и

яблочной $(1,1-2,3\ \Gamma/дм^3)$, а также менее значительными концентрациями янтарной $(0,01-0,2\ \Gamma/дм^3)$ и лимонной $(0,1-0,2\ \Gamma/дм^3)$ кислот.

Известно, что основными кислотами, влияющими на кислотность сусла и вина, являются винная и яблочная кислоты. Оптимальным соотношением которых является 2:1. Данное соотношение установлено для форм ТАНА 1 и ТАНА 56. Соотношение кислот 1,5:1 зафиксировано у образца ТАНА 86, который в дальнейшем, в ходе рабочих дегустаций, характеризовался как мягкий, гармоничный во вкусе, с плодовыми оттенками и тонами цветов в аромате.

Таблица 1 — Физико-химические показатели качества сусла белых форм винограда селекции СКЗНИИСиВ, выращенных КФХ «Радик», урожай 2010 г.

№	Наименование	Массовая концентрация сахаров, г/100см ³	Массовая концентрация титруемых кислот, г/дм ³	рН	Органические кислоты, г/дм ³					
					вин- ная	яблоч- ная	соотноше- ние кислот винная/ яблочная	янтар- ная	лимон- ная	молоч- ная
1	TAHA 1	19,6	6,5	3,2	4,14	2,04	2:1	0,01	0,19	0,32
3	TAHA 23	25,8	7,4	3,6	4,46	1,05	4:1	0,21	0,16	0,68
4	TAHA 56	21,5	8,0	3,4	3,92	2,05	2:1	0,02	0,18	0,40
5	TAHA 82	20,2	6,5	3,5	3,52	1,80	2:1	0,20	0,21	0,67
6	TAHA 86	19,9	7,8	3,4	3,06	2,16	1,5:1	0,22	0,21	0,71

В полученных виноматериалах определяли объемную долю этилового спирта, массовую концентрацию летучих кислот, общего диоксида серы, рН.

В ходе исследований установлено, что спиртуозность виноматериалов находилась на уровне от 11,4 до 13,4 % об., что объясняется высоким уровнем сахаров в ягодах винограда (табл. 1,2).

Массовая концентрация титруемых кислот опытных сухих виноматериалов находилась в требуемом ГОСТом диапазоне не менее 3 г/дм^3) и составила $6,5 - 8,0 \text{ г/дм}^3$, что является оптимальным уровнем органических кислот и позволило характеризовать виноматериалы как образцы с полным, гармоничным вкусом.

Таблица № 2 - Физико-химические показатели сухих белых виноматериалов новых форм винограда селекции СКЗНИИСиВ, выращенных КФХ «Радик», урожай 2010 г.

Образец	Спирт	Массовая	Массовая		Массовая	pН	Дегустаци
	% об.	концентрация	концентрация		концентра		онная
		летучих	диоксида серы,		ция		оценка
		кислот, $\Gamma/дм^3$	$M\Gamma/дM^3$		титруемых		
			общая	свобод-	кислот		
				ная	г/дм ³		
TAHA 1	12,2	0,82	141	21	5,8	3,2	7,8
TAHA 23	13,4	0,95	166	24	6,2	3,5	7,7
TAHA 56	11,4	0,34	149	21	7,0	3,5	7,7
TAHA 82	13,2	0,72	148	21	5,7	3,4	7,5
TAHA 86	13,2	0,68	141	21	6,0	3,5	7,8

Уровень рН рассматриваемых образцов составил от 3,2 до 3,5, что явилось довольно высоким показателем и, как следствие этого, явилось микробиологической угрозой для стабильности испытуемых виноматериалов. Вследствие этого, было принято решение о повышении уровня свободной сернистой кислоты в вине до 20 мг/дм³.

Проведенная дегустация показала, что все образцы имеют оценку выше проходного балла для молодых виноматериалов - 7,3 балла. Приготовленные из форм винограда Тана 1 и ТАНА 86 виноматериалы, были оценены выше остальных – 7,8 балла и отличались соломенной окраской, тонким, цветочным ароматом и чистым, мягким, гармоничным вкусом. Анализ ароматических компонентов формы ТАНА 86 показал наличие высокой концентрации ароматического спирта - фенилэтанола 73,5 мг/дм³, обладающего ароматом розы и меда. Также для этого варианта определено и максимальное количество высших спиртов 233,7 мг/дм³, которые активно участвуют в сложении аромата вина.

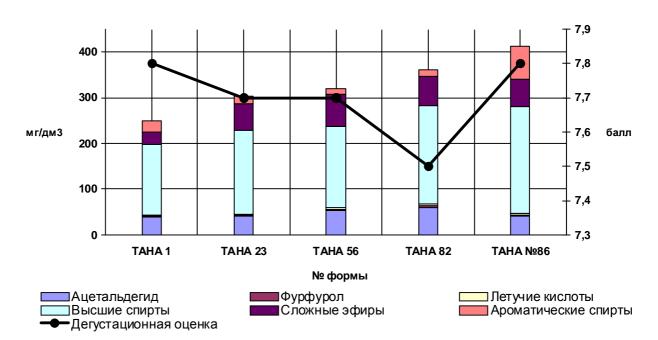


Рисунок 1 — Массовая концентрация основных ароматических веществ и дегустационная оценка в виноматериалах белых форм винограда селекции СКЗНИИСиВ, урожай 2010 г, КФХ «Радик»

Минимальную дегустационную оценку получил образец ТАНА 82 – 7,5 балла, аромат которого был оценен как цветочный с легким посторонним тоном. Для данного варианта определена высокая концентрация ацетальдегида 60, 0 мг/дм³ – основного вещества придающего резкость аромату. Также, в сравнении с другими образцами, в нем выявлены высокие концентрации фурфурола - 4,1 мг/дм³, сложных эфиров – 63,5 мг/дм³, а также летучих кислот – 4,2 мг/дм³, что в совокупности и могло повлиять на формирование негармоничного аромата.

Таким образом, проведенные исследования показали, что полученные из новых белых форм виноматериалы ТАНА 1 и ТАНА86 в Центральной зоне Краснодарского края, обладают высокими органолептическими характеристиками, что позволяет рекомендовать их для дальнейшего использования в производстве высококачественных вин.