ИТОГИ ИЗУЧЕНИЯ СОРТОВ И КЛОНОВ ВИНОГРАДА В РАЗНЫХ ЗОНАХ КРАСНОДАРСКОГО КРАЯ

Л.П.Трошин, Д.Е.Хлевный, А.С.Звягин, П.П.Подваленко, Т.И.Гугучкина, А.И.Мисливский

Почвенно-климатические условия Краснодарского края, основного региона производства виноградовинодельческой продукции РФ, позволяют возделывать сорта разных направлений использования и различных сроков созревания. Несмотря на достаточно большое разнообразие сортимента виноградных лоз в регионе, в нем отсутствуют или имеются лишь единицы представителей определенных групп сортов, востребованных производством. Совершенствование сортимента - постоянно решаемая задача в любом регионе или предприятии [1, 2, 7].

Именно поэтому здесь создается Национальная ампелографическая коллекция России, где собрано 3,7 тыс. весьма разнообразных генотипов из 42 стран мира (по объему генофонда на 1-м месте в СНГ, 2-м - в Европе и 4-м - в мире) [5]. Генофонд коллекции расположен в трех эколого-географических зонах: Анапо-Таманской, Предгорной и Центральной. Изучение генофонда и выделение лучших образцов для использования в производстве и селекции - цель данной работы.

Испытываемые по ампелографическим показателям сорта сравнивались с международными стандартами: для красных вин - Каберне-Совиньон, для белых - Ркацители; столовые - с Шаслой белой и Молдовой.

Центральная зона. Морфо-биологическое и хозяйственно-технологическое изучение сортов-интродуцентов винограда проводилось на коллекционном участке учхоза "Кубань" Кубанского государственного аграрного университета, где произрастает 654 генотипа. Схема посадки участка однолетними саженцами в 1999 г. - 3,0 х 1,0 м. Форма куста - бесштамбовый многорукавный веер. Агротехника на коллекции не отличалась от общепринятой. Культура винограда укрывная, корнесобственная.

Поскольку в промышленном сортименте Краснодарского края ощущается явный дефицит как мускатных, так и черноокрашенных сортов, нами исследован, в первую очередь, их генофонд, что отражено в табл. 1-7.

Характеристика мускатных сортов винограда

Таблица 1

Признаки	Годы	Вио- рика	Берка- нуш	БГ-14	Мускат одесский	Рислинг мускатный	
Побегов	2003	25	25	34	<u>одесский</u> 40	25	
на кусте, шт.	2003	22	28	23	37	32	
на кусте, шт.	2004	17	22	29	40	24	
	Среднее	21,3	25,0	28,7	39,0	27,0	
Развилось	2003	93	83	92	89	83	
глазков, %	2004	88	88	77	88	91	
THUSKOB, 70	2005	88	80	78	81	80	
	Среднее	89,7	83,7	82,3	86,0	84,7	
Коэффициент	2003	1,5	1,3	1,6	1,0	1,5	
плодоношения	2004	1,6	0,9	1,8	1,0	1,9	
плодопошопия	2005	1,6	0,6	0,9	1,2	1,1	
	Среднее	1,6	0,9	1,5	1,1	1,5	
Средняя масса	2003	100	180	136	150	100	
грозди, г	2004	134	226	100	216	158	
12.2.21.1.7	2005	124	127	129	125	125	
-	Среднее	119,3	177,7	121,7	163,7	127,7	
Урожай с куста,	2003	3,1	3,7	2,8	2,7	4,4	
кг	2004	2,5	3,5	2,4	3,1	3,4	
	2005	3,3	1,3	1,9	5,7	3,3	
	Среднее	3,0	2,8	2,4	3,8	3,7	
Сахаристость,	2003	19,1	19,4	19,9	20,3	22,7	
г/100 см ³	2004	19,8	19,1	19,1	20,8	21,8	
	2005	21,2	20,5	20,7	23,1	20,2	
	Среднее	20,0	19,7	19,9	21,4	21,6	
Титруемая	2003	7,9	6,1	8,4	7,6	10,4	
кислотность, г/л	2004	8,3	5,9	9,7	6,5	11,5	
	2005	7,1	7,2	7,8	7,8	7,2	 _
	Среднее	7,8	6,4	8,6	7,3	9,7	

Клоны сорта Мускат белый, интродуцированные из Крыма, обеспечивали высокую потенциальную продуктивность, однако страдали в центральной зоне Кубани от серой гнили. Другие генотипы по среднему урожаю с 1 куста классифицированы в следующем убывающем порядке: Мускат одесский - 3,8 кг, Рислинг мускатный - 3,7 кг, Виорика (контроль) - 3,0 кг, Беркануш - 2,8 кг и Борнемисса гергели-14 - 2,4 кг. Сравнение уровней урожайности испытываемых сортов на фоне контрольного сорта Виорика показало превосходство первых двух на 23-27%. Причем, Мускат одесский и Рислинг мускатный по содержанию сахаров в соке ягод превышали остальные более чем на 1%. Рислинг мускатный передан Крымской ОСС ВИР для размножения; Мускат одесский уже размножен до 1 га, районирован с 2005 г. по Северо-Кавказскому региону.

У всех изученных в зоне сортообразцов содержание сахаров и кислот в соке ягод в подавляющем большинстве случаев соответствовало требованиям, предъявляемым к техническим сортам, предназначенным для производства вин различных марок.

За годы исследований среди группы технических сортов самым высоким сахаронакоплением характеризовались сорта Мицар - 19,1% и Гранатовый - 18,6%, что на 2,7-2,2% больше контрольного сорта Каберне-Совиньон (16,4%). Антарис и Бейсуг имели по 16,7% сахаров - на 0,3% выше контроля (табл. 2).

Характеристика сортов и клонов винограда

Таблица 2

	Грана-					•	Каберне-		
Показатели	товый	Мицар	Антарис	Бейсуг	Совинь- он (к)	Совинь- он 05	Совинь- он 14		
Продолжительность									
продукционного									
периода, дни	154	156	161	163	157	151	158		
Средний урожай									
с куста, кг	1,89	3,04	2,18	6,71	1,80	3,59	2,89		
Ранжирование	2	5	3	7	1	6	4		
Масса грозди, г	143	118	164	207	100	114	123		
Урожайность, т/га	a 6,3	10,1	7,3	22,4	6	12	9,6		
Массовая									
концентрация									
сахаров, г/100 см	1 ³ 18,6	19,1	16,7	16,7	16,4	18,9	17,5		
Ранжирование	5	7	2,5	2,5	1	6	4		
Титруемая									
кислотность, г/л	6,7	10,1	8,3	11,5	6,8	7,7	8,9		
Устойчивость									
к милдью, балл	3	2,5	3	3,5	3	3	3		
Устойчивость									
к серой гнили,	_			_					
балл	2	1	0	3	2,5	2,5	2		
Устойчивость									
к белой гнили,	0	0	•	4	4		4		
балл	2	3	0	1	1	2	1		
Дегустационная	7.0	7.0			7.0	7.0	7.0		
оценка, балл	7,9	7,9	7,7	7,5	7,9	7,8	7,8		

По титруемой кислотности: высокий показатель у сортов Бейсуг (11,5) и Мицар (10,1) и умеренный у Антариса (8,3), Гранатового (6,7) и контрольного Каберне-Совиньон (6,7). Последний по кислотности сока ягод отклонений от литературных сведений не имел.

Таким образом, на основании полученных результатов биохимического изучения сортов-интродуцентов они распределены для приготовления определенных типов вин следующим образом: Гранатовый и Мицар - столовые красные, а Бейсуг и Антарис - на виноматериалы для коньячного производства.

Для решения вопроса интегральной оценки сравниваемых сортов предложен принцип ранжирования их хозяйственно-ценных признаков и арифметическое суммирование рангов. Причем минимальный ранг присваивался сорту с худшей выраженностью признака, а максимальный ранг - с лучшей. Сорта, набравшие максимальную сумму рангов, естественно, представляют большую хозяйственную значимость, и наоборот (ранжирование сортов выполнено от худшего к лучшему).

Как видно из данных табл. 2, самым позднеспелым сортом оказался Бейсуг (ранг 1) и самым раннеспелым из семи изученных генотипов - клон Каберне-Совиньона № 05 (ранг 7): чем раннеспелее сорт, тем раньше попадает виноград на переработку и тем раньше растение начинает подготавливаться к перезимовке.

По урожайности лидирующее место занял сорт Бейсуг (6,71 кг/куст = ранг 7), последнее - контроль (1,8 кг/куст = ранг 1), т.е. высокоурожайный Бейсуг превосходит менее урожайный сорт Каберне-Совиньон по этому

важнейшему хозяйственному признаку в 3,7 раза. Разница в урожайности сортов весьма значительна: 6,71 - 1,80 = 4,91 кг/куст. Несколько менее урожайный клон № 05 (3,59 кг/куст) по этому признаку занял шестое место и ему приписан ранг 6.

По сахаристости: минимальная, хотя для технических сортов и кондиционная, массовая концентрация сахаров в соке ягод из числа изученных отмечена у контрольного сорта (16,4% = ранг 1), максимальная - у сорта Мицар (19,1% = ранг 7). Разность на 2,7% сахаров значительна: чем выше концентрация сахаров, тем качество винограда выше и тем более ценен сорт для технологической обработки.

По биологическим показателям устойчивости к милдью самым поражаемым сортом оказался Мицар (ранг 1), а менее поражаемым - сорт Бейсуг (ранг 7), к серой гнили ягод устойчив Бейсуг (ранг 7), а не устойчив - сорт Антарис (ранг 1), к белой гнили - также не устойчив Антарис (ранг 1) и со слабыми пятнами поражения - сорт Мицар (ранг 7).

Венец качества продукции красного технического сорта - красное столовое вино. Как показали результаты дегустаций, лучшие дегустационные оценки получили вина сортов Гранатовый, Мицар и контроль - по 7,9 балла (у этих трех генотипов по 6 рангов) и меньшая оценка у белоягодного сорта Бейсуг (ранг 1).

Осуществленное таким путем ранжирование сортов и по другим признакам позволяют просуммировать ранги по каждому сорту и выделить по их сумме наиболее ценные генотипы. Ими являются клон Каберне-Совиньон № 05 - 50,5, сорт Гранатовый - 46, сорт Бейсуг - 43,5 и сорт Мицар - 43 единиц рангов. Меньше всех рангов у сорта Антарис - 28,5, несколько больше у контроля - 32,5, а у клона № 14 - 36.

При изучении количественных и качественных признаков четырех селекционных сортов и двух рядом произрастающих высокопродуктивных клонов на фоне сорта Каберне-Совиньон установлено, что по степени устойчивости (не поражаемости) листьев и соцветий к милдью выделился сорт Бейсуг, а по степени поражаемости - сорт Мицар; по степени устойчивости к серой гнили Бейсуг также превысил остальные сорта, а Антарис оказался самым поражаемым; по устойчивости к распространяемой в последние годы болезни "белая гниль" лидировал Мицар, а Антарис показал себя поражаемым, что следует принять во внимание при химической обработке насаждений этих сортов. Однако в целом продуктивность всех сортов и клонов (урожайность 6,3-22,4 т/га) в сравнении с контролем (6 т/га) была выше.

Поскольку производственную ценность представляют прежде всего высокоурожайные и высококачественные сорта, то с этой позиции нами выделен в первую очередь сорт Бейсуг (22,4 т/га), во вторую - сорт Мицар (10,1 т/га) и в третью - сорт Антарис (7,3 т/га). Районированный на Кубани сорт Гранатовый из всех четырех оказался низкоурожайным (6,3 т/га), однако рентабельным (сорт рентабелен, если урожайность более 3 т/га).

Коэффициенты индивидуальной изменчивости урожайности кустов варьировали от 29 до 63 %, что в целом ниже контрольного сорта Каберне-Совиньон (65 %).

При проведении вариационного анализа данных урожайности сортов селекции СКЗНИИСиВ в сравнении с контрольным установлено, что сорта Мицар и Бейсуг достоверно превысили Каберне-Совиньон - явное подтверждение их перспективности для возделывания на Северном Кавказе (табл. 3). Однако учитывая качество их продукции (по сахаристости и кислотности сока ягод, а также дегустационным оценкам молодого вина - по 8-балльной шкале), можно утверждать о приемлемости культивирования сорта Мицар для производства красных столовых вин, а Бейсуга - для коньячного производства.

Таблица 3 Биометрическая оценка селекционных сортов винограда по урожаю с куста.

	Грана-				Каберне-
Показатели	товый	Мицар	Антарис	Бейсуг	Совинь-
					он (к)
Средний урожай					
с куста, кг	1,89	3,04	2,18	6,71	1,80
Ошибка среднего	0,27	0,26	0,34	0,38	0,18
Стандартное отклонение	1,19	1,31	0,83	1,92	1,17
Дисперсия выборки	1,4050	1,7275	0,6817	3,6975	1,3802
Интервал	4,3	5,2	2,5	8,5	5,4
Минимум	0,2	0,3	1	3	0,1
Максимум	4,5	5,5	3,5	11,5	5,5
Коэффициент					
вариации, %	62,6	43,2	37,8	28,7	65,4
Разница средних					
значений	0,09	1,24	0,38	4,91	
Критерий Стьюдента	0,3	3,8**	1,1	11,7**	
Критерий Фишера	1,02	1,25	0,58	2,68**	

^{** -} значимо при P < 1 %

Отсюда следует вывод об обоснованности размножения в производстве высокопродуктивного клона Каберне-Совиньон № 05 и сорта Гранатовый. Учитывая уточняющие экспериментальные данные, полученные по сравниваемым генотипам в двух других экологических зонах Кубани, в лидирующую группу по комплексу признаков и свойств вошли сорта Антарис и Мицар. Решением Ученого совета Северо-Кавказского ЗНИИСиВ и НТС Комитета по виноградарству Краснодарского края эти два сорта рекомендованы к передаче на госиспытания в РФ.

Ниже приводятся краткие описания изученных сортов винограда селекции СКЗНИИСиВ, аттестованные как перспективные для Кубани.

АНТАРИС = Саперави х Цимлянский черный. Синоним - Юровский. Авторы - Коханова Л.Т., Нудьга Т.А., Трошин Л.П., Талаш А.И., Зинченко Т.П., Ключникова Г.П., Даурова Е.А., Гугучкина Т.И. Описание сорта приведено на стр. 248 этой книги.

БЕЙСУГ = Каберне-Совиньон х Кубанский черный. Лист округлый, пятилопастный, сильно рассеченный, с густым щетинистым опушением на нижней стороне листа. Ягода белая, округлая, средняя. Гроздь плотная, средняя и крупная, цилиндро-коническая. Средняя масса 230-250 г. Урожайность в корнесобственной культуре до 10 кг с куста. Коэффициент плодоношения 1,2, коэффициент плодоносности 1,4. Сила роста кустов сильная. Необходима прививка на филлоксероустойчивые подвои. Ягоды созревают в третьей декаде сентября. Среднее содержание сахаров 17,0-18,2 г/100 см³, кислотность 8,1-8,9 г/дм³. Урожай пригоден для приготовления белых сухих ординарных вин и коньяков. Дегустационная оценка вин - 7,7-7,8 балла.

МИЦАР = Серексия х Каберне-Совиньон. Относится к сортам средне-позднего срока созревания. Гроздь средняя и крупная, ширококоническая, рыхлая. Ягода средняя, синяя. Урожайность до 7 кг с куста. Сахаристость ягод 22-24 г/100 см³ при кислотности 7-8 г/дм³. Содержание витамина С 16,9 мг/100 г, витамина В₉ 1,08 мг/100 г. Сорт отличается повышенной устойнивостью к грибным болезням, особенно к белой и серой гнилям, высоким качеством вин и соков, содержанием витаминов. Виноградные соки имеют полный мягкий вкус с приятным тонким сортовым ароматом. Красные столовые и десертные вина характеризуются интенсивной окраской, ароматом с черносмородиновыми тонами, полнотой и мягкостью вкуса. Дегустационная оценка вин - 7,7-7,8 балла.

В микроколлекции Кубанского госагроуниверситета изучена также группа клонов сорта Каберне-Совиньон в сравнении с исходной формой (табл. 4).

Таблица 4

Характеристика черноокрашенных клонов винограда

Признаки	Годы	Каберне- Совинь- он (к)	Каберне- Совинь- он 5	Каберне- Совинь- он 14	Каберне- Совинь- он 15А	Каберне- Совинь- он 15Б
Побегов	2003	24	18	25	23	16
на кусте, шт.	2004	19	16	24	13	17
	2005	26	18	25	22	17
	Среднее	23	17	24,6	19,3	17
Коэффициент	2003	0,9	0,9	1,0	1,0	0,7
плодоношения	2004	0,9	1,0	0,8	1,0	0,8
	2005	0,8	1,0	1,0	1,0	0,7
	Среднее	0,86	1,0	0,9	1,0	0,7
Средняя	2003	82,6	76,6	101	63	103
масса грозди, г	2004	81,2	73	104	66	105
	2005	83,7	74	98	63	112
	Среднее	82,5	74,5	101	64	107
Урожай	2003	1,7	1,2	2,5	1,5	1,2
с куста, кг	2004	1,4	1,2	2,2	1,4	1,5
	2005	1,6	1,3	2,4	1,4	1,3
	Среднее	1,6	1,2	2,4	1,4	1,3
Сахаристость,	2003	16,4	18,9	17,5	18,4	20,1
г/100 см ³	2004	17,0	19,0	18,3	18,6	21,3
	2005	18,6	19,4	19,4	18,8	22,8
	Среднее	17,3	19,1	18,4	18,6	21,4

Все клоны этой группы как по комплексу количественных признаков, так и по генотипической среде (по микросателлитным локусам, проанализированным с использованием маркеров VRTAG79, VVMD5, VVMD7, VRZAG62 и VVS2) достоверно различаются; они проходят экологические испытания в Анапо-Таманской зоне [3-4].

С целью оценки обоснованности использования в виноделии выделившихся в центральной зоне Кубани сортов и клонов винограда и определения качества выработанных из них виноматералов были проведены биохимические и технологические исследования в научном центре виноделия Северо-Кавказского ЗНИИСиВ. В опытных виноматериалах определяли объемную долю этилового спирта, массовую концентрацию титруемых, летучих и аминокислот, содержание ароматических веществ, катионов металлов и др. [6].

В изученных виноматериалах концентрация винной кислоты превалировала над яблочной; последняя находилась в пределах 0,1-0,2 г/дм³ у следующих клонов и сортов: Беркануш, Рислинг Алькадар, Рислинг Алькадар 34, Рислинг Алькадар 34А, Рислинг Алькадар 34Б, Пино белый, Первенец Магарача, Цитронный Магарача и Виорика. В данных образцах прошло яблочномолочное брожение с полным превращением яблочной кислоты в молочную: концентрация молочной кислоты увеличена до 1,8 г/дм³ (Первенец Магарача) - 3,2 г/дм³ (Рислинг Алькадар 34). В процессе яблочно-молочного брожения произошло также превращение лимонной кислоты в уксусную. В этих образцах массовая концентрация уксусной кислоты была невысока и находилась в пределах 0,3-0,6 г/дм³. В виноматериалах, полученных из клонов Мускат белый, Рислинг Алькадар 34А, Рислинг Алькадар 34Б, Пино белый и Первенец Магарача массовая концентрация янтарной кислоты, известной благотворным воздействием на организм человека, превысила 1,0 г/дм³.

Все виноматериалы были опробованы дегустационной комиссией и получили дегустационные оценки от 7,4 до 7,9 балла. Высокими органолептическими показателями отмечены следующие образцы: БГ-14, Рислинг Алькадар 34А, Рислинг Алькадар 34Б, Пино белый, Виорика - по 7,6 балла и Совиньон, Мускат белый, Рислинг Алькадар, Цитронный Магарача - по 7,7 балла. Так, Мускат белый характеризовался тонким, чистым ароматом чайной розы, мягким, гармоничным вкусом без малейших признаков окисленности.

На основании результатов комплексного многолетнего исследования опытных виноматериалов выделены образцы, приготовленные из сортов и клонов винограда Мускат белый, Рислинг Алькадар, Цитронный Магарача, Шардоне. Данные виноматериалы соответствовали по всем рассматриваемым показателям высококачественным молодым белым винам.

В результате анализа аминокислотного состава виноматериалов Мерло, Каберне-Совиньон, Каберне фран, Либерти, Антарис, Мицар и др. идентифицировано 14 аминокислот, причем во всех образцах была обнаружена высокая концентрация таких биологически ценных аминокислот, как пролин, аргинин и треонин. Следует отметить, что в красных виноматериалах обнаружена в небольших концентрациях аминокислота фенилаланин (1,0-4,9 мг/дм³), в результате превращений которой при формировании вина образуются 2-фенилэтанол и ацетатный эфир, обладающие запахом розы. Также идентифицированы аминокислоты триптофан (до 14,3 мг/дм³) и тирозин (до 60 мг/дм³), участвующие в цикле трикарбоновых кислот. Причем в результате превращений триптофана образуется никотиновая кислота (витамин PP), обладающая успокоительным действием при неврологических перенапряжениях человека. Тирозин является исходным веществом для синтеза гормонов щитовидной железы и обладает мощными стимулирующими свойствами, превращаясь в вещества, регулирующие давление крови.

Натуральные виноматериалы красных сортов и клонов Либерти, Антарис, Мицар, Мерло, Каберне-Совиньон и Каберне фран (7,7-7,9 балла) отличались нарядной рубиновой окраской, развитым сложным ароматом с хорошо выраженными тонами различных ягод, а также мягким бархатистым вкусом.

2005 г. - это год качественных красных вин. По итогам года были выделены виноматериалы с высокой органолептической характеристикой на уровне 7,78-7,83 баллов из клонов и сортов Мерло, Мерло 181, Пино красный, Каберне-Совиньон 5А, Антарис и 40 лет Октября. Данные виноматериалы отличались нарядной темнорубиновой окраской, хорошо выраженным ароматом красных ягод - смородины, вишни, а в образце Пино красный - тонкими цветочно-мускатными тонами. Еще более гармоничными и слаженными были виноматериалы из клонов Каберне-Совиньон 21 (7,95 балла), Каберне-Совиньон 15-1 (7,97 балла), Каберне-Совиньон 15-2 (7,9 балла), которые помимо яркой искристой рубиновой окраски имели сложный аромат черной, красной смородины, терна, молочных сливок и обладали хорошо слаженным, полным танинным вкусом.

Таким образом, проведенные результаты исследований позволили рекомендовать для Центральной зоны Краснодарского края лучшие из вышеназванных красные сорта и клоны винограда, из которых возможно производство высококачественных натуральных сухих красных вин.

Из числа вступивших в плодоношение генотипов по комплексу признаков и свойств выделены сортаинтродуценты селекции Института винограда и вина "Магарач": Крымчанин, Ркацители Магарача, Тавквери Магарача и Новоукраинский ранний; Украинского НИИВиВ им. В.Е. Таирова - Аркадия, Оригинал; Всероссийского НИИВиВ им. Я.И.Потапенко - Баклановский, Талисман и др.; Молдавского НИИВиВ - Бируинца, Кантемировский, Юрин и других учреждений.

Предгорная зона. В микроколлекции Крымской ОСС ВИР (А.С.Смурыгин, В.А.Носульчак) выделены сорта североамериканской селекции Венус, Конкорд, Марс, Либерти, Штойбен и др., размножаемые для полупроизводственного испытания на Кубани и переданные в селекцентры РФ. Во ВНИИВиВ им. Я.И.Потапенко на их основе уже создан ряд перспективных устойчивых гибридных форм.

Анапо-Таманская зона. Из генофонда НАКР при Анапской ЗОСВиВ (М.И.Панкин, О.М.Ильяшенко, А.Г.Коваленко) отобраны и переданы для госиспытания в РФ сорта Алина, Анапский ранний, Анапский устойчивый, Астаникский, Екатеринодарский, Красностоп АЗОС, Литдар, Тамань и др. Эти сорта размножаются на подвойной основе для создания маточников привойных лоз.

В ООО "Победа" Темрюкского района (А.И. Мисливский) детальное изучение особенностей адаптации интродуцированных в хозяйство сортов обусловило выделение для широкого освоения высокопродуктивных протоклонов Шардоне, Клерета и Саперави, технических генотипов Алан-2, Кунлеань, Педро крымский, Совиньон зеленый, Уньи белый и Цитронный Магарача.

Итоговые результаты многолетнего изучения отечественных и интродуцированных генотипов в трех вышеназванных зонах Кубани освещены в нашей книге "Районированные сорта винограда. Рекомендации для виноградарских хозяйств Краснодарского края" (Краснодар, 2004).

По переданным на госиспытания в РФ генотипам нами получены:

- патенты на устойчивые технические сорта Первенец Магарача (№ 2279), Цитронный Магарача (№ 2548) и Мерло Грамотенко (№ 2854);
- свидетельства на оригинаторство сортов Мерло (№ 38373/24), Мускат одесский (№ 17797/24), Мюллер Тургау (1392/24), Бианка (26063/24), Данко (16131/24) Первенец Магарача (11220/24), Подарок Магарача (12191/24), Цитронный Магарача (25884/24), а также подвоев Гравесак (40340/24), РСБ 1 (40341/24), Феркаль (40339/24) и др.

Часть фотографий документов ФГУ "Государственная комиссия Российской Федерации по испытанию и охране селекционных достижений" представлена ниже.

ЛИТЕРАТУРА

- 1. Виноградарство России: настоящее и будущее // Е. Егоров, А. Аджиев, К. Серпуховитина, Л. Трошин, А. Жуков, Ш. Гусейнов, А. Алиева. Махачкала: Издательский дом "Новый день", 2004. 440 с.
- 2. Виноград: перспективные и новые сорта с элементами агротехники / И.А. Кострикин и др. Ростов-на-Дону, 2004. 232 с.
- Звягин А.С., Трошин Л.П. Паспортизация сортов и клонов винограда // Материалы шестой региональной научно-практической конференции молодых ученых "Научное обеспечение агропромышленного комплекса". - Краснодар, 2004. -C. 116-117.
- 4. Звягин А.С., Трошин Л.П., Мухина Ж.М., Супрун И.И. Адаптация методики микросателлитного анализа для изучения генетического разнообразия сортов винограда Пино белый, Рислинг и их клонов // Новации и эффективность производственных процессов в виноградарстве и виноделии. Т. І. Виноградарство. Краснодар, 2005. С. 113-117.
- 5. Мировой генофонд винограда на Кубани / Л.П.Трошин, К.А.Серпуховитина, В.А. Носульчак, А.С.Смурыгин, О.М.Ильяшенко, М.И.Панкин // Новации и эффективность производственных процессов в виноградарстве и виноделии. Т. І. Виноградарство. Краснодар, 2005. С. 124-131.
- 6. Перспективы использования новых технических белых сортов винограда, произрастающих в центральной зоне Краснодарского края / Т.И.Гугучкина, О.Н. Шелудько, Н.Н.Бареева, Л.П.Трошин // Новации и эффективность производственных процессов в виноградарстве и виноделии. Т. II. Виноделие. Краснодар, 2005. С. 52-58.
- 7. Трошин Л.П., Радчевский П.П. Районированные сорта винограда России. Краснодар: ООО "Вольные мастера", 2005. 176 с.

Опубликовано в сборнике:

ТЕХНОЛОГИИ ПРОИЗВОДСТВА ЭЛИТНОГО ПОСАДОЧНОГО МАТЕРИАЛА И ВИНОГРАДНОЙ ПРОДУКЦИИ, ОТБОРА ЛУЧШИХ ПРОТОКЛОНОВ ВИНОГРАДА

(РЕКОМЕНДАЦИИ ДЛЯ ВИНОГРАДАРСКИХ ХОЗЯЙСТВ КРАСНОДАРСКОГО КРАЯ)

Под общей редакцией профессора Л.П. Трошина

КРАСНОДАР 2005

C. 96-107